This site uses cookies to provide logins and other features. Please accept the use of cookies by clicking Accept.
Tomato locus 3-phosphoinositide-dependent protein kinase-1
Locus details | Download GMOD XML | Note to Editors | Annotation guidelines |
[loading edit links...]
|
[loading...]
|
|
![]() ![]() |
Registry name: | None | [Associate registry name] |
![]() ![]() | [Add notes, figures or images] |
Success
The display image was set successfully.
![]() ![]() | [Associate accession] |
Accession name:
Would you Like to specify an allele?
Alleles (0) | None | [Add new Allele] |
![]() ![]() | [Associate new locus] |
[loading...]
|
![]() ![]() | View 3-phosphoinositide-dependent protein kinase-1 relationships in the stand-alone network browser |
[loading...] | [Legend] [Levels] |
![]() ![]() |
[loading...]
![]() ![]() |
![]() ![]() |
![]() ![]() | unprocessed genomic sequence region underlying this gene |
>Solyc11g007760.1 SL2.50ch11:1983128..1978088 (sequence from reverse strand)
ATGTTGGCATTGGTAGGGGGAGAAGGTGATATGGAGCAAGAATTTGATGCAAAGCTAAAGATTCAGAACAATTCAGCTAATACTCAGAGATCTAAGAGCTTTGCATTTAGGGCACCACAAGAGAATTTTACAATTCAAGATTTTGAATTGGGGAAGATCTATGGAGTTGGTTCTTATTCCAAGGTCACTTTTTTCCCCCCTTTGTTCCTTATCTTTGTATTTCCATTTTTTAAAAATTTCAACTTGGTAGCATTTCTATATTTGGTTTCTATTGCTTAAAAATTTCTGCTTAACTGTGAAAATTTAAACTTGTTAGCATTTCTATATTCTTCTTGTTGGCCTTTTTGTTTAGTATGGAAGGGCTTGGTCACTGGTTTATCTCTGTTGTCATTTTTTACTGAATTCCACATGTCTTCCCTTTTGATGGTTCTTTAATCTGTGTAAGCAGAAATTTAGTTTACTGTCCACTGATAAATTTTTTTTGAGGGTTTATCTTTGAAGTTTGTCTGAACTTATCTGGTAAGAAGCTGTTCATTTGAAGAGATTTATACTTATAGAAACTATGCTTTATGGCATTAATGATGTAGGGATGTAAAAATATCATTCTTGTTTCATTTGCTTTTGGTGTAAAGAGAAAATTCTCATTTGTGTTGGTAGTTTGTGTGATCTAATAGATGATTTTGGTTGAACCACAATTTTTGTGTAACATATTTTTGGACACTTTCTTGTTGTGTTGTTTATGGAATATATCTGATTTGTCAAAAAGAAGGAGAAGAAGAAGAAATCACACCCCTAGTGTAGTGCTCCATTTCAGGGGTTGTCATAGACAAATGTGTGATTGAGTTTCTGGCTTATTAGTTTGTACTAGTAACTAACAAGAATCTTCTGAGATGTGTTGTATATCCCTTTTCATCTTCTCACTTTTTCATTAGAATAGATTATGGATATAATTAAAGTACATGAACTCAAATTGTGGTGTTAATGCTTAATTATCGACATGTCAAATTAAAGTTTTAGCATTTAAGTTATTTGCCCTCTATGTTTTATCAGGTTGTCAGAGCGAAAAAGAAAGATACTGCGAATGTTTATGCCTTGAAGATCATGGACAAGAAGTTCATCACTAAGGAAAATAAGACTGCTTATGTGAAACTAGAGCGTATTGTACTTGATCAGTTAGATCATCCCGGTGTTGTCCGACTATTTTTCACCTTTCAAGACACTTTTTCACTGTGTGAGTATTTTATTCATTCTTCATTTAGTGTCTTTCCCCCCATTTTGCATGCACTCTTGTTGATCTTTGGTTTGTCTAATTTAATTGTATTTGTCTGTATTATGAAGACATGGCACTTGAGTCTTGTGAAGGTGGAGAGCTTTTTGATCAAATAACAAGGGTAAGTAAATGAAGAACCTTGATGCATGTATTCTTGTTGTTGTTATATGAAGTGTCCAAGTAGAACCCGATGCAATAAGAAAAATGGAAGTTCCTGTCAACCCGTGAACCTTTTGCAGAATATGGATATTGTACTTATTTGAATGAAAGCTAAATGGTTGAGTTCCGTAGGCTGAAATGTAGCCATACTTTGATGTTCTATAAGGTGTCTGTATTATTCTTTCCAACTTCCGAAAAGAATGAACATCTTCTCAAAGGTTCCCTGTGTATTCTGCTTTTTCCAGTCAAAACATTGGTGTTTTTCATGAACTTATTGAAAATGTTCCCGTCCTTTCTTCAAAATATTTCCTTTCTCTAAAGTTTGTGACTACATATATGATGTGCTAATATTCTTGTTTGATTGGCTAGCAAGAGAGGATCATGAACAATGTAGTTTTAACTTTGTGGGTGCAGAAAGGCCGTTTGTCTGAAGATGAGGCACGCTTTTATGCAGCTGAAGTTGTAGACGCTCTTGAATATATACATAGTATGGGATTGATTCATCGAGACATTAAGGTATTTCACAAAGTGGACTGTTACGTGAATAATATATGTGGGGGGATTCTGACAGTTCGCTTATTGGCAGCCAGAGAACCTGCTTCTTACTTCAGATGGACATATTAAAATTGCAGACTTTGGCAGTGTAAAGCCAATGCAGGATAGCAGAATAACAGTCCTTCCAAATGCTGCATCAGGTAAATGTTGCTTTCTACGATGACACTCTCCTTGAAATTGGATTCACATTAACCTGATGAGAGTATATTGTCGTCTTGATCATTATTGAATCATTGGTTGTTCTTTTTATTCAGATGACAAAGCCTGTACTTTTGTGGGAACAGCCGCTTATGTACCTCCTGAAGTTTTAAATTCTTCTCCTGCGACTTTTGGGTATAAAACTCTATCTTTGGAAAAACCATATTTTTCTTCTTCTTTGTGTTTTATTAGGACATATGTTGTAGGTCCATGTCTGCATCATTGCTCCTTTTAAATTTTTACAGCTTGTTCATATTAGCGTCTACATTTCTTTATTATGAATCATATTTGTCTAACATCACTATTCATTTTGGATATGTCTTTACCAGAAATGATCTTTGGGCACTTGGCTGCACATTGTATCAAATGCTTTCAGGAACTTCTCCGTTTAAAGATGCCAGTGAATGGCTCATCTTCCAGAGAATCATTGCCAGAGATATTAGATTCCCAAATTATTTTTCAAATGAAGCCAGAGATATTATTGATCAGCTGCTGGTACGCTATCATTTCGTATTTAATATTCACTTCCATCCTGTGGTTCCTCTTTCTGTTTCCCCTATTATGCTAGCTTTTTTTCTTTTTATGTTTTATACTTTACACTTCTCCATTTGACTGAACTTTCATCTCTAGACAGTGTGGTCTCTACTTTAAACAACACGCCTCCTTGAAGTGAGGTTTGACCAGCTTTGTTTTTGGAATTATAATATTCCTGATCTAAAGTTGTAGCTAATTTTTTCTCAGTCGTGGACCATATCTTTGTCTATTGACCTTTATCTTTTGTGAATGAAACAGGGAATGTCCCTACAATTTTATACGTATTTTATAATCTGCAATCGATACCTATCCTATTATGAATAAAGTAAAAAAAGTGCATGTGAAAAATGTAACTTTCGCTTCTGAAGTAGTATCTTGTTTTGTCTACACTGTACAACATGACCGTCATGCAGTCTAGAGAGTTATATACTATGTAATATCATTACAAAAAATTCTGGGTGTTGAAATACCACCACAATGCTTACATGACAAAGACCTTTCATATTTTTCAACTTCTTACATAGAGAGAATGAATTTTTCTACAGTAGTCTAGCACTATCTTCGAGACTTCGACAACTTAGTTCTTTCTAATAGGATGTAGTATATAGTTTTAAAACATTCAAATTTCAAAATATAAAGCCAGAAGCTTTGTCCTCCATGTGCTGGCTTGCAAGTGCAGTTTTGCTGGTTATAATTTTTCGTTACTTGCAGCTATTAATTATTATCCAGTACTGGAAAAGGACGTTGCTGGTATATTGTGGGACTTTTGTGCTAATGTGAGCAACGTGCTACGTTGTCTTTCACTAGTTCCTATGAAGTTTCAGGTTATAGAACTTTAGGTTGGTGAACGCAAGGGTGTGACCTTGTGATCAATGAAATAGGTTGAGAACCATGAAGTCTTGGATTCAATTCTCAGTTGAGCAAAGACACTACGTGTTTTGTTTCATCTGTCTAAGCTATGGTGGATAGAGTTACCAGGTAACTGTCTTGGCCGGAAGTAGAGGGTGGAATTAGTCTAGGTGCACGCTAGCTGGCCCAAACACTACATTTACTACAACAAACAACAACATACTCAGTGTAATCCTACAATTAGAGTCTGGGGAGGGTGGTGTTACGCAGACCTTAACCCTACTTTGTGAAGGTAAGGTAGATAGGTTGTTTCCGAATAGATGCTTGACTCAAGTAAAGCCATATAAAAGCACGTTTGAGAAGGACATACAGTAATCAATAATCCATGAAAATAATGGAGTATGTATGTTAGTATGTTAGATATATCTTCCTATTAGTGTTATCTGTTCTGCTGATTGACTTGAGCGCAAAAAAAACTCAGGATGTTGATCCTAGCAGAAGACCTGGTGCTGGACCTGATGGTTATGCTTCCTTGAAAAATCATCCTTTCTTTAGTGGGATCGATTGGGAGAATTTGAGGTTGCAGACCCCTCCAAGGCTTGCCATGGAGCCAAAAGTATGTCATTCATTTTGCTTTATGTTTTAGATCTTACTTGCCCCAACAGATAGTTCTTTTCCCGTTAAACAGTTCTAGTTATGAATCATTCAGGCCCCGTCAACTCATAGCAGTGGTGATGAGCAAGATCCTTCATGGAATCCATCACACATTGGAGATGGTTCAGTTAGACCTAACGATGGAAACGGTGCTGCTGCATCAGTTTCTGAAGCTGGTAACAGTATCACCAGGCTCGCATCTATCGACTCCTTTGACTCAAAATGGTAGGCTCATGAACTTCTGCTGACCTCAATAATGAAAAACACTCCAGTATATCCGGATGCTGTCATATTTGTTAACCTTTTCAATAGAGTTCCATAATTCCATCTGGACCAAATGCTCTTTTTCTATCTTCCCTTTTGATAACTACTATATGTTGACTTTTTTCTTGTGATGGCATCAATAGGAAGCAATTTTTAGATCCTGGTGAATCCGTGCTCATGATCTCGATGGTGAAAAAGTTGCAGAAACTCACAAGCAAGAAAGTTCAGCTAATCCTAACAAATAAACCAAAGTTGATTTACGTAGATCCCTCAAAGTTGGTGATCAAAGGGAACATTATATGGTCCGACAATCCTAACGATCTTAGCATTCAAGTCACAAGCCCTTCACAGTTCAAGATTTGTACAGTTAAGTTCCTTTGCTTTCCCTGCATATAACATTGTTAGTCAAGTTTTTGTTACTTTAGTTTAACTCGTTTCCGCTATCTGTGTGCATTCATCTTGTGATCATTACAGCCAAAGAAAGTTATGTCATTCGAGGATGCCAAAAACCGAGCACAACAGTGGAAAAAGGCGATTGAAGCTCTCCAGAACCGGTGA
ATGTTGGCATTGGTAGGGGGAGAAGGTGATATGGAGCAAGAATTTGATGCAAAGCTAAAGATTCAGAACAATTCAGCTAATACTCAGAGATCTAAGAGCTTTGCATTTAGGGCACCACAAGAGAATTTTACAATTCAAGATTTTGAATTGGGGAAGATCTATGGAGTTGGTTCTTATTCCAAGGTCACTTTTTTCCCCCCTTTGTTCCTTATCTTTGTATTTCCATTTTTTAAAAATTTCAACTTGGTAGCATTTCTATATTTGGTTTCTATTGCTTAAAAATTTCTGCTTAACTGTGAAAATTTAAACTTGTTAGCATTTCTATATTCTTCTTGTTGGCCTTTTTGTTTAGTATGGAAGGGCTTGGTCACTGGTTTATCTCTGTTGTCATTTTTTACTGAATTCCACATGTCTTCCCTTTTGATGGTTCTTTAATCTGTGTAAGCAGAAATTTAGTTTACTGTCCACTGATAAATTTTTTTTGAGGGTTTATCTTTGAAGTTTGTCTGAACTTATCTGGTAAGAAGCTGTTCATTTGAAGAGATTTATACTTATAGAAACTATGCTTTATGGCATTAATGATGTAGGGATGTAAAAATATCATTCTTGTTTCATTTGCTTTTGGTGTAAAGAGAAAATTCTCATTTGTGTTGGTAGTTTGTGTGATCTAATAGATGATTTTGGTTGAACCACAATTTTTGTGTAACATATTTTTGGACACTTTCTTGTTGTGTTGTTTATGGAATATATCTGATTTGTCAAAAAGAAGGAGAAGAAGAAGAAATCACACCCCTAGTGTAGTGCTCCATTTCAGGGGTTGTCATAGACAAATGTGTGATTGAGTTTCTGGCTTATTAGTTTGTACTAGTAACTAACAAGAATCTTCTGAGATGTGTTGTATATCCCTTTTCATCTTCTCACTTTTTCATTAGAATAGATTATGGATATAATTAAAGTACATGAACTCAAATTGTGGTGTTAATGCTTAATTATCGACATGTCAAATTAAAGTTTTAGCATTTAAGTTATTTGCCCTCTATGTTTTATCAGGTTGTCAGAGCGAAAAAGAAAGATACTGCGAATGTTTATGCCTTGAAGATCATGGACAAGAAGTTCATCACTAAGGAAAATAAGACTGCTTATGTGAAACTAGAGCGTATTGTACTTGATCAGTTAGATCATCCCGGTGTTGTCCGACTATTTTTCACCTTTCAAGACACTTTTTCACTGTGTGAGTATTTTATTCATTCTTCATTTAGTGTCTTTCCCCCCATTTTGCATGCACTCTTGTTGATCTTTGGTTTGTCTAATTTAATTGTATTTGTCTGTATTATGAAGACATGGCACTTGAGTCTTGTGAAGGTGGAGAGCTTTTTGATCAAATAACAAGGGTAAGTAAATGAAGAACCTTGATGCATGTATTCTTGTTGTTGTTATATGAAGTGTCCAAGTAGAACCCGATGCAATAAGAAAAATGGAAGTTCCTGTCAACCCGTGAACCTTTTGCAGAATATGGATATTGTACTTATTTGAATGAAAGCTAAATGGTTGAGTTCCGTAGGCTGAAATGTAGCCATACTTTGATGTTCTATAAGGTGTCTGTATTATTCTTTCCAACTTCCGAAAAGAATGAACATCTTCTCAAAGGTTCCCTGTGTATTCTGCTTTTTCCAGTCAAAACATTGGTGTTTTTCATGAACTTATTGAAAATGTTCCCGTCCTTTCTTCAAAATATTTCCTTTCTCTAAAGTTTGTGACTACATATATGATGTGCTAATATTCTTGTTTGATTGGCTAGCAAGAGAGGATCATGAACAATGTAGTTTTAACTTTGTGGGTGCAGAAAGGCCGTTTGTCTGAAGATGAGGCACGCTTTTATGCAGCTGAAGTTGTAGACGCTCTTGAATATATACATAGTATGGGATTGATTCATCGAGACATTAAGGTATTTCACAAAGTGGACTGTTACGTGAATAATATATGTGGGGGGATTCTGACAGTTCGCTTATTGGCAGCCAGAGAACCTGCTTCTTACTTCAGATGGACATATTAAAATTGCAGACTTTGGCAGTGTAAAGCCAATGCAGGATAGCAGAATAACAGTCCTTCCAAATGCTGCATCAGGTAAATGTTGCTTTCTACGATGACACTCTCCTTGAAATTGGATTCACATTAACCTGATGAGAGTATATTGTCGTCTTGATCATTATTGAATCATTGGTTGTTCTTTTTATTCAGATGACAAAGCCTGTACTTTTGTGGGAACAGCCGCTTATGTACCTCCTGAAGTTTTAAATTCTTCTCCTGCGACTTTTGGGTATAAAACTCTATCTTTGGAAAAACCATATTTTTCTTCTTCTTTGTGTTTTATTAGGACATATGTTGTAGGTCCATGTCTGCATCATTGCTCCTTTTAAATTTTTACAGCTTGTTCATATTAGCGTCTACATTTCTTTATTATGAATCATATTTGTCTAACATCACTATTCATTTTGGATATGTCTTTACCAGAAATGATCTTTGGGCACTTGGCTGCACATTGTATCAAATGCTTTCAGGAACTTCTCCGTTTAAAGATGCCAGTGAATGGCTCATCTTCCAGAGAATCATTGCCAGAGATATTAGATTCCCAAATTATTTTTCAAATGAAGCCAGAGATATTATTGATCAGCTGCTGGTACGCTATCATTTCGTATTTAATATTCACTTCCATCCTGTGGTTCCTCTTTCTGTTTCCCCTATTATGCTAGCTTTTTTTCTTTTTATGTTTTATACTTTACACTTCTCCATTTGACTGAACTTTCATCTCTAGACAGTGTGGTCTCTACTTTAAACAACACGCCTCCTTGAAGTGAGGTTTGACCAGCTTTGTTTTTGGAATTATAATATTCCTGATCTAAAGTTGTAGCTAATTTTTTCTCAGTCGTGGACCATATCTTTGTCTATTGACCTTTATCTTTTGTGAATGAAACAGGGAATGTCCCTACAATTTTATACGTATTTTATAATCTGCAATCGATACCTATCCTATTATGAATAAAGTAAAAAAAGTGCATGTGAAAAATGTAACTTTCGCTTCTGAAGTAGTATCTTGTTTTGTCTACACTGTACAACATGACCGTCATGCAGTCTAGAGAGTTATATACTATGTAATATCATTACAAAAAATTCTGGGTGTTGAAATACCACCACAATGCTTACATGACAAAGACCTTTCATATTTTTCAACTTCTTACATAGAGAGAATGAATTTTTCTACAGTAGTCTAGCACTATCTTCGAGACTTCGACAACTTAGTTCTTTCTAATAGGATGTAGTATATAGTTTTAAAACATTCAAATTTCAAAATATAAAGCCAGAAGCTTTGTCCTCCATGTGCTGGCTTGCAAGTGCAGTTTTGCTGGTTATAATTTTTCGTTACTTGCAGCTATTAATTATTATCCAGTACTGGAAAAGGACGTTGCTGGTATATTGTGGGACTTTTGTGCTAATGTGAGCAACGTGCTACGTTGTCTTTCACTAGTTCCTATGAAGTTTCAGGTTATAGAACTTTAGGTTGGTGAACGCAAGGGTGTGACCTTGTGATCAATGAAATAGGTTGAGAACCATGAAGTCTTGGATTCAATTCTCAGTTGAGCAAAGACACTACGTGTTTTGTTTCATCTGTCTAAGCTATGGTGGATAGAGTTACCAGGTAACTGTCTTGGCCGGAAGTAGAGGGTGGAATTAGTCTAGGTGCACGCTAGCTGGCCCAAACACTACATTTACTACAACAAACAACAACATACTCAGTGTAATCCTACAATTAGAGTCTGGGGAGGGTGGTGTTACGCAGACCTTAACCCTACTTTGTGAAGGTAAGGTAGATAGGTTGTTTCCGAATAGATGCTTGACTCAAGTAAAGCCATATAAAAGCACGTTTGAGAAGGACATACAGTAATCAATAATCCATGAAAATAATGGAGTATGTATGTTAGTATGTTAGATATATCTTCCTATTAGTGTTATCTGTTCTGCTGATTGACTTGAGCGCAAAAAAAACTCAGGATGTTGATCCTAGCAGAAGACCTGGTGCTGGACCTGATGGTTATGCTTCCTTGAAAAATCATCCTTTCTTTAGTGGGATCGATTGGGAGAATTTGAGGTTGCAGACCCCTCCAAGGCTTGCCATGGAGCCAAAAGTATGTCATTCATTTTGCTTTATGTTTTAGATCTTACTTGCCCCAACAGATAGTTCTTTTCCCGTTAAACAGTTCTAGTTATGAATCATTCAGGCCCCGTCAACTCATAGCAGTGGTGATGAGCAAGATCCTTCATGGAATCCATCACACATTGGAGATGGTTCAGTTAGACCTAACGATGGAAACGGTGCTGCTGCATCAGTTTCTGAAGCTGGTAACAGTATCACCAGGCTCGCATCTATCGACTCCTTTGACTCAAAATGGTAGGCTCATGAACTTCTGCTGACCTCAATAATGAAAAACACTCCAGTATATCCGGATGCTGTCATATTTGTTAACCTTTTCAATAGAGTTCCATAATTCCATCTGGACCAAATGCTCTTTTTCTATCTTCCCTTTTGATAACTACTATATGTTGACTTTTTTCTTGTGATGGCATCAATAGGAAGCAATTTTTAGATCCTGGTGAATCCGTGCTCATGATCTCGATGGTGAAAAAGTTGCAGAAACTCACAAGCAAGAAAGTTCAGCTAATCCTAACAAATAAACCAAAGTTGATTTACGTAGATCCCTCAAAGTTGGTGATCAAAGGGAACATTATATGGTCCGACAATCCTAACGATCTTAGCATTCAAGTCACAAGCCCTTCACAGTTCAAGATTTGTACAGTTAAGTTCCTTTGCTTTCCCTGCATATAACATTGTTAGTCAAGTTTTTGTTACTTTAGTTTAACTCGTTTCCGCTATCTGTGTGCATTCATCTTGTGATCATTACAGCCAAAGAAAGTTATGTCATTCGAGGATGCCAAAAACCGAGCACAACAGTGGAAAAAGGCGATTGAAGCTCTCCAGAACCGGTGA
Download sequence region |
Get flanking sequences on SL2.50ch11
|
![]() ![]() |
![]() ![]() | terms associated with this mRNA |
![]() ![]() | spliced cDNA sequence, including UTRs |
>Solyc11g007760.1.1 Protein kinase 3 (AHRD V1 ***- D3BKW3_POLPA); contains Interpro domain(s) IPR015746 Protein Kinase-1, 3-phosphoinositide dependent
ATGTTGGCATTGGTAGGGGGAGAAGGTGATATGGAGCAAGAATTTGATGCAAAGCTAAAGATTCAGAACAATTCAGCTAATACTCAGAGATCTAAGAGCTTTGCATTTAGGGCACCACAAGAGAATTTTACAATTCAAGATTTTGAATTGGGGAAGATCTATGGAGTTGGTTCTTATTCCAAGGTTGTCAGAGCGAAAAAGAAAGATACTGCGAATGTTTATGCCTTGAAGATCATGGACAAGAAGTTCATCACTAAGGAAAATAAGACTGCTTATGTGAAACTAGAGCGTATTGTACTTGATCAGTTAGATCATCCCGGTGTTGTCCGACTATTTTTCACCTTTCAAGACACTTTTTCACTGTACATGGCACTTGAGTCTTGTGAAGGTGGAGAGCTTTTTGATCAAATAACAAGGAAAGGCCGTTTGTCTGAAGATGAGGCACGCTTTTATGCAGCTGAAGTTGTAGACGCTCTTGAATATATACATAGTATGGGATTGATTCATCGAGACATTAAGCCAGAGAACCTGCTTCTTACTTCAGATGGACATATTAAAATTGCAGACTTTGGCAGTGTAAAGCCAATGCAGGATAGCAGAATAACAGTCCTTCCAAATGCTGCATCAGATGACAAAGCCTGTACTTTTGTGGGAACAGCCGCTTATGTACCTCCTGAAGTTTTAAATTCTTCTCCTGCGACTTTTGGAAATGATCTTTGGGCACTTGGCTGCACATTGTATCAAATGCTTTCAGGAACTTCTCCGTTTAAAGATGCCAGTGAATGGCTCATCTTCCAGAGAATCATTGCCAGAGATATTAGATTCCCAAATTATTTTTCAAATGAAGCCAGAGATATTATTGATCAGCTGCTGGATGTTGATCCTAGCAGAAGACCTGGTGCTGGACCTGATGGTTATGCTTCCTTGAAAAATCATCCTTTCTTTAGTGGGATCGATTGGGAGAATTTGAGGTTGCAGACCCCTCCAAGGCTTGCCATGGAGCCAAAAGCCCCGTCAACTCATAGCAGTGGTGATGAGCAAGATCCTTCATGGAATCCATCACACATTGGAGATGGTTCAGTTAGACCTAACGATGGAAACGGTGCTGCTGCATCAGTTTCTGAAGCTGGTAACAGTATCACCAGGCTCGCATCTATCGACTCCTTTGACTCAAAATGGAAGCAATTTTTAGATCCTGGTGAATCCGTGCTCATGATCTCGATGGTGAAAAAGTTGCAGAAACTCACAAGCAAGAAAGTTCAGCTAATCCTAACAAATAAACCAAAGTTGATTTACGTAGATCCCTCAAAGTTGGTGATCAAAGGGAACATTATATGGTCCGACAATCCTAACGATCTTAGCATTCAAGTCACAAGCCCTTCACAGTTCAAGATTTGTACACCAAAGAAAGTTATGTCATTCGAGGATGCCAAAAACCGAGCACAACAGTGGAAAAAGGCGATTGAAGCTCTCCAGAACCGGTGA
ATGTTGGCATTGGTAGGGGGAGAAGGTGATATGGAGCAAGAATTTGATGCAAAGCTAAAGATTCAGAACAATTCAGCTAATACTCAGAGATCTAAGAGCTTTGCATTTAGGGCACCACAAGAGAATTTTACAATTCAAGATTTTGAATTGGGGAAGATCTATGGAGTTGGTTCTTATTCCAAGGTTGTCAGAGCGAAAAAGAAAGATACTGCGAATGTTTATGCCTTGAAGATCATGGACAAGAAGTTCATCACTAAGGAAAATAAGACTGCTTATGTGAAACTAGAGCGTATTGTACTTGATCAGTTAGATCATCCCGGTGTTGTCCGACTATTTTTCACCTTTCAAGACACTTTTTCACTGTACATGGCACTTGAGTCTTGTGAAGGTGGAGAGCTTTTTGATCAAATAACAAGGAAAGGCCGTTTGTCTGAAGATGAGGCACGCTTTTATGCAGCTGAAGTTGTAGACGCTCTTGAATATATACATAGTATGGGATTGATTCATCGAGACATTAAGCCAGAGAACCTGCTTCTTACTTCAGATGGACATATTAAAATTGCAGACTTTGGCAGTGTAAAGCCAATGCAGGATAGCAGAATAACAGTCCTTCCAAATGCTGCATCAGATGACAAAGCCTGTACTTTTGTGGGAACAGCCGCTTATGTACCTCCTGAAGTTTTAAATTCTTCTCCTGCGACTTTTGGAAATGATCTTTGGGCACTTGGCTGCACATTGTATCAAATGCTTTCAGGAACTTCTCCGTTTAAAGATGCCAGTGAATGGCTCATCTTCCAGAGAATCATTGCCAGAGATATTAGATTCCCAAATTATTTTTCAAATGAAGCCAGAGATATTATTGATCAGCTGCTGGATGTTGATCCTAGCAGAAGACCTGGTGCTGGACCTGATGGTTATGCTTCCTTGAAAAATCATCCTTTCTTTAGTGGGATCGATTGGGAGAATTTGAGGTTGCAGACCCCTCCAAGGCTTGCCATGGAGCCAAAAGCCCCGTCAACTCATAGCAGTGGTGATGAGCAAGATCCTTCATGGAATCCATCACACATTGGAGATGGTTCAGTTAGACCTAACGATGGAAACGGTGCTGCTGCATCAGTTTCTGAAGCTGGTAACAGTATCACCAGGCTCGCATCTATCGACTCCTTTGACTCAAAATGGAAGCAATTTTTAGATCCTGGTGAATCCGTGCTCATGATCTCGATGGTGAAAAAGTTGCAGAAACTCACAAGCAAGAAAGTTCAGCTAATCCTAACAAATAAACCAAAGTTGATTTACGTAGATCCCTCAAAGTTGGTGATCAAAGGGAACATTATATGGTCCGACAATCCTAACGATCTTAGCATTCAAGTCACAAGCCCTTCACAGTTCAAGATTTGTACACCAAAGAAAGTTATGTCATTCGAGGATGCCAAAAACCGAGCACAACAGTGGAAAAAGGCGATTGAAGCTCTCCAGAACCGGTGA
![]() ![]() | translated polypeptide sequence |
>Solyc11g007760.1.1 Protein kinase 3 (AHRD V1 ***- D3BKW3_POLPA); contains Interpro domain(s) IPR015746 Protein Kinase-1, 3-phosphoinositide dependent
MLALVGGEGDMEQEFDAKLKIQNNSANTQRSKSFAFRAPQENFTIQDFELGKIYGVGSYSKVVRAKKKDTANVYALKIMDKKFITKENKTAYVKLERIVLDQLDHPGVVRLFFTFQDTFSLYMALESCEGGELFDQITRKGRLSEDEARFYAAEVVDALEYIHSMGLIHRDIKPENLLLTSDGHIKIADFGSVKPMQDSRITVLPNAASDDKACTFVGTAAYVPPEVLNSSPATFGNDLWALGCTLYQMLSGTSPFKDASEWLIFQRIIARDIRFPNYFSNEARDIIDQLLDVDPSRRPGAGPDGYASLKNHPFFSGIDWENLRLQTPPRLAMEPKAPSTHSSGDEQDPSWNPSHIGDGSVRPNDGNGAAASVSEAGNSITRLASIDSFDSKWKQFLDPGESVLMISMVKKLQKLTSKKVQLILTNKPKLIYVDPSKLVIKGNIIWSDNPNDLSIQVTSPSQFKICTPKKVMSFEDAKNRAQQWKKAIEALQNR*
MLALVGGEGDMEQEFDAKLKIQNNSANTQRSKSFAFRAPQENFTIQDFELGKIYGVGSYSKVVRAKKKDTANVYALKIMDKKFITKENKTAYVKLERIVLDQLDHPGVVRLFFTFQDTFSLYMALESCEGGELFDQITRKGRLSEDEARFYAAEVVDALEYIHSMGLIHRDIKPENLLLTSDGHIKIADFGSVKPMQDSRITVLPNAASDDKACTFVGTAAYVPPEVLNSSPATFGNDLWALGCTLYQMLSGTSPFKDASEWLIFQRIIARDIRFPNYFSNEARDIIDQLLDVDPSRRPGAGPDGYASLKNHPFFSGIDWENLRLQTPPRLAMEPKAPSTHSSGDEQDPSWNPSHIGDGSVRPNDGNGAAASVSEAGNSITRLASIDSFDSKWKQFLDPGESVLMISMVKKLQKLTSKKVQLILTNKPKLIYVDPSKLVIKGNIIWSDNPNDLSIQVTSPSQFKICTPKKVMSFEDAKNRAQQWKKAIEALQNR*
![]() ![]() |
![]() ![]() | [Associate new unigene] |
Unigene ID:
[loading...]
![]() ![]() | [Associate new genbank sequence] |
AY849915 Lycopersicon esculentum 3-phosphoinositide-dependent protein kinase-1 (Pdk1) mRNA, complete cds.
Other genome matches | None |
![]() ![]() | [Associate publication] [Matching publications] |
Characterisation of a plant 3-phosphoinositide-dependent protein kinase-1 homologue which contains a pleckstrin homology domain.
FEBS letters (1999)
Show / hide abstract
Show / hide abstract
A plant homologue of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1) has been identified in Arabidopsis and rice which displays 40% overall identity with human 3-phosphoinositide-dependent protein kinase-1. Like the mammalian 3-phosphoinositide-dependent protein kinase-1, Arabidopsis 3-phosphoinositide-dependent protein kinase-1 and rice 3-phosphoinositide-dependent protein kinase-1 possess a kinase domain at N-termini and a pleckstrin homology domain at their C-termini. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 can rescue lethality in Saccharomyces cerevisiae caused by disruption of the genes encoding yeast 3-phosphoinositide-dependent protein kinase-1 homologues. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 interacts via its pleckstrin homology domain with phosphatidic acid, PtdIns3P, PtdIns(3,4,5)P3 and PtdIns(3,4)P2 and to a lesser extent with PtdIns(4,5)P2 and PtdIns4P. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is able to activate human protein kinase B alpha (PKB/AKT) in the presence of PtdIns(3,4,5)P3. Arabidopsis 3-phosphoinositide-dependent protein kinase-1 is only the second plant protein reported to possess a pleckstrin homology domain and the first plant protein shown to bind 3-phosphoinositides.
Deak, M. Casamayor, A. Currie, RA. Downes, CP. Alessi, DR.
FEBS letters.
1999.
451(3).
220-6.
Growth signalling pathways in Arabidopsis and the AGC protein kinases.
Trends in plant science (2003)
Show / hide abstract
Show / hide abstract
Lipid-derived signals are central to regulating a multitude of cellular processes but, in plants, little is known of the downstream signalling pathways. The Arabidopsis 3-phosphoinositide-dependent protein kinase (PDK1) could couple lipid signals to the activation of several protein kinases of the so-called AGC kinase family. The Arabidopsis AGC kinases contain sequence motives required for the docking of PDK1 and phosphorylation of their activation loop in the kinase catalytic domain. It is becoming evident that specific members of the AGC kinases are implicated in key growth signalling pathways. For example, Arabidopsis p70(S6K) might be a nodal point able to integrate hormonal and developmental signals with nutritional inputs, together with the Arabidopsis Target of Rapamycin (TOR) protein.
Bögre, L. Okrész, L. Henriques, R. Anthony, RG.
Trends in plant science.
2003.
8(9).
424-31.
A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis.
The EMBO journal (2004)
Show / hide abstract
Show / hide abstract
Here we report on a lipid-signalling pathway in plants that is downstream of phosphatidic acid and involves the Arabidopsis protein kinase, AGC2-1, regulated by the 3'-phosphoinositide-dependent kinase-1 (AtPDK1). AGC2-1 specifically interacts with AtPDK1 through a conserved C-terminal hydrophobic motif that leads to its phosphorylation and activation, whereas inhibition of AtPDK1 expression by RNA interference abolishes AGC2-1 activity. Phosphatidic acid specifically binds to AtPDK1 and stimulates AGC2-1 in an AtPDK1-dependent manner. AtPDK1 is ubiquitously expressed in all plant tissues, whereas expression of AGC2-1 is abundant in fast-growing organs and dividing cells, and activated during re-entry of cells into the cell cycle after sugar starvation-induced G1-phase arrest. Plant hormones, auxin and cytokinin, synergistically activate the AtPDK1-regulated AGC2-1 kinase, indicative of a role in growth and cell division. Cellular localisation of GFP-AGC2-1 fusion protein is highly dynamic in root hairs and at some stages confined to root hair tips and to nuclei. The agc2-1 knockout mutation results in a reduction of root hair length, suggesting a role for AGC2-1 in root hair growth and development.
Anthony, RG. Henriques, R. Helfer, A. Mészáros, T. Rios, G. Testerink, C. Munnik, T. Deák, M. Koncz, C. Bögre, L.
The EMBO journal.
2004.
23(3).
572-81.
Phosphoinositide-dependent kinase-1 orthologues from five eukaryotes are activated by the hydrophobic motif in AGC kinases.
Biochemical and biophysical research communications (2004)
Show / hide abstract
Show / hide abstract
Phosphoinositide-dependent kinase-1 (PDK1) mediates activation of many AGC kinases by docking onto a phosphorylated hydrophobic motif located C-terminal of the catalytic domain in the AGC kinase. The interaction shifts PDK1 into a conformation with increased catalytic activity and leads to autophosphorylation of PDK1. We demonstrate here that addition of a hydrophobic motif peptide increases the catalytic activity of PDK1 orthologues from Homo sapiens, Aplysia californica, Arabidopsis thaliana, Schizosaccharomyces pombe (ksg1), and Saccharomyces cerevisiae (Pkh1 and Pkh2) 2- to 12-fold. Furthermore, the hydrophobic motif peptide increases autophosphorylation of PDK1 from Homo sapiens, S. pombe, and S. cerevisiae (Phk2). Our results suggest that PDK1 interaction and activation by the hydrophobic motif of AGC kinases is a central mechanism in PDK1 function, which is conserved during eukaryotic evolution.
Silber, J. Antal, TL. Gammeltoft, S. Rasmussen, TE.
Biochemical and biophysical research communications.
2004.
321(4).
823-7.
Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death.
The EMBO journal (2006)
Show / hide abstract
Show / hide abstract
Bacterial speck disease in tomato is caused by Pseudomonas syringae pv. tomato. Resistance to this disease is conferred by the host Pto kinase, which recognizes P. s. pv. tomato strains that express the effector AvrPto. We report here that an AvrPto-dependent Pto-interacting protein 3 (Adi3) is a member of the AGC family of protein kinases. In mammals, AGC kinases are regulated by 3-phosphoinositide-dependent protein kinase-1 (Pdk1). We characterized tomato Pdk1 and showed that Pdk1 and Pto phosphorylate Adi3. Gene silencing of Adi3 in tomato causes MAPKKKalpha-dependent formation of necrotic lesions. Use of a chemical inhibitor of Pdk1, OSU-03012, also implicates Pdk1 and Adi3 in plant cell death regulation. Adi3 thus appears to function analogously to the mammalian AGC kinase protein kinase B/Akt by negatively regulating cell death via Pdk1 phosphorylation. We speculate that the negative regulatory function of Adi3 might be subverted by interaction with Pto/AvrPto, leading to host cell death that is associated with pathogen attack.
Devarenne, TP. Ekengren, SK. Pedley, KF. Martin, GB.
The EMBO journal.
2006.
25(1).
255-65.
Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis.
Proceedings of the National Academy of Sciences of the United States of America (2006)
Show / hide abstract
Show / hide abstract
Activity of the serine-threonine protein kinase PINOID (PID) has been implicated in the asymmetrical localization of the membrane-associated PINFORMED (PIN) family of auxin transport facilitators. However, the means by which PID regulates PIN protein distribution is unknown. We have used recombinant PID protein to dissect the regulation of PID activity in vitro. We demonstrate that intramolecular PID autophosphorylation is required for the ability of PID to phosphorylate an exogenous substrate. PID-like mammalian AGC kinases act in a phosphorylation cascade initiated by the phospholipid-associated kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1), which binds to the C-terminal hydrophobic PDK1-interacting fragment (PIF) domain found in PDK1 substrates. We find that Arabidopsis PDK1 interacts with PID, and that transphosphorylation by PDK1 increases PID autophosphorylation. We show that a PID activation loop serine is required for PDK1-dependent PID phosphorylation. This activation is rapid and requires the PIF domain. Cell extracts from flowers and seedling shoots dramatically increase PID phosphorylation in a tissue-specific manner. A PID protein variant in which the PIF domain was mutated failed to be activated by the seedling shoot extracts. PID immunoprecipitated from Arabidopsis cells in which PDK1 expression was inhibited by RNAi showed a dramatic reduction in transphosphorylation of myelin basic protein substrate. These results indicate that AtPDK1 is a potent enhancer of PID activity and provide evidence that phospholipid signaling may play a role in the signaling processes controlling polar auxin transport.
Zegzouti, H. Anthony, RG. Jahchan, N. Bögre, L. Christensen, SK.
Proceedings of the National Academy of Sciences of the United States of America.
2006.
103(16).
6404-9.
Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases.
The Journal of biological chemistry (2006)
Show / hide abstract
Show / hide abstract
The AGCVIIIa kinases of Arabidopsis are members of the eukaryotic PKA, PKG, and PKC group of regulatory kinases. One AGCVIIIa kinase, PINOID (PID), plays a fundamental role in the asymmetrical localization of membrane proteins during polar auxin transport. The remaining 16 AGCVIIIa genes have not been associated with single mutant phenotypes, suggesting that the corresponding kinases function redundantly. Consistent with this idea, we find that the genes encoding the Arabidopsis AGCVIIIa kinases have spatially distinct, but overlapping, expression domains. Here we show that the majority of Arabidopsis AGCVIIIa kinases are substrates for the 3-phosphoinositide-dependent kinase 1 (PDK1) and that trans-phosphorylation by PDK1 correlates with activation of substrate AGCVIIIa kinases. Mutational analysis of two conserved regulatory domains was used to demonstrate that sequences located outside of the C-terminal PDK1 interaction (PIF) domain and the activation loop are required for functional interactions between PDK1 and its substrates. A subset of GFP-tagged AGCVIIIa kinases expressed in Saccharomyces cerevisiae and tobacco BY-2 cells were preferentially localized to the cytoplasm (AGC1-7), nucleus (WAG1 and KIPK), and the cell periphery (PID). We present evidence that PID insertion domain sequences are sufficient to direct the observed peripheral localization. We find that PID specifically but non-selectively binds to phosphoinositides and phosphatidic acid, suggesting that PID might directly interact with the plasma membrane through protein-lipid interactions. The initial characterization of the AGCVIIIa kinases presented here provides a framework for elucidating the physiological roles of these kinases in planta.
Zegzouti, H. Li, W. Lorenz, TC. Xie, M. Payne, CT. Smith, K. Glenny, S. Payne, GS. Christensen, SK.
The Journal of biological chemistry.
2006.
281(46).
35520-30.
The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1.
The Journal of biological chemistry (2006)
Show / hide abstract
Show / hide abstract
Arabidopsis PDK1 activity is regulated by binding to the lipid phosphatidic acid (PA) resulting in activation of the oxidative stress-response protein kinase OXI1/AGC2-1. Thus there is an inferred link between lipid signaling and oxidative stress signaling modules. Among a panel of hormones and stresses tested, we found that, in addition to PA, the fungal elicitor xylanase activated PDK1, suggesting that PDK1 has a role in plant pathogen defense mechanisms. The downstream OXI1 was activated by additional stress factors, including PA, H(2)O(2), and partially by xylanase. We have isolated an interacting partner of OXI1, a Ser/Thr kinase (PTI1-2), which is downstream of OXI1. Its sequence closely resembles the tomato Pti kinase, which has been implicated in the hypersensitive response, a localized programmed cell death that occurs at the site of pathogen infection. PTI1-2 is activated by the same stresses/elicitors as OXI1 and additionally flagellin. We have used RNA interference to knock out the expression of PDK1 and OXI1 and to study the effects on PTI1-2 activity. We show that specific lipid signaling pathways converge on PTI1-2 via the PDK1-OXI1 axis, whereas H(2)O(2) and flagellin signals to OXI1-PTI1-2 via a PDK1-independent pathway. PTI1-2 represents a new downstream component that integrates diverse lipid and reactive oxygen stress signals and functions closely with OXI1.
Anthony, RG. Khan, S. Costa, J. Pais, MS. Bögre, L.
The Journal of biological chemistry.
2006.
281(49).
37536-46.
Plant evolution: AGC kinases tell the auxin tale.
Trends in plant science (2007)
Show / hide abstract
Show / hide abstract
The signaling molecule auxin is a central regulator of plant development, which instructs tissue and organ patterning, and couples environmental stimuli to developmental responses. Here, we discuss the function of PINOID (PID) and the phototropins, members of the plant specific AGCVIII protein kinases, and their role in triggering and regulating development by controlling PIN-FORMED (PIN) auxin transporter-generated auxin gradients and maxima. We propose that the AGCVIII kinase gene family evolved from an ancestral phototropin gene, and that the co-evolution of PID-like and PIN gene families marks the transition of plants from water to land. We hypothesize that the PID-like kinases function in parallel to, or downstream of, the phototropins to orient plant development by establishing the direction of polar auxin transport.
Galván-Ampudia, CS. Offringa, R.
Trends in plant science.
2007.
12(12).
541-7.
![]() ![]() | [Add ontology annotations] |
[loading...]
![]() ![]() |
User comments |
Please wait, checking for comments. (If comments do not show up, access them here)
Your Lists
Public Lists
List Contents
List Validation Report: Failed
Elements not found:
Optional: Add Missing Accessions to A List
Mismatched case
Click the Adjust Case button to align the case in the list with what is in the database.
Multiple mismatched case
Items listed here have mulitple case mismatches and must be fixed manually. If accessions need to be merged, contact the database directly.
List elements matching a synonym
Multiple synonym matches
Fuzzy Search Results
Synonym Search Results
Available Seedlots
Your Datasets
Public Datasets
Dataset Contents
Dataset Validation Failed
Elements not found:
Your Calendar
Having trouble viewing events on the calendar?
Are you associated with the breeding program you are interested in viewing?
Add New Event
Event Info
Attribute | Value |
---|---|
Project Name: | |
Start Date: | |
End Date: | |
Event Type: | |
Event Description: | |
Event Web URL: |
Edit Event
Login
Forgot Username
If you've forgotten your username, enter your email address below. An email will be sent with any account username(s) associated with your email address.
Reset Password
To reset your password, please enter your email address. A link will be sent to that address with a link that will enable you to reset your password.
Create New User
Working
