Databases and SQL syntax
WOrkshop

UPLB January 2016

Noe Fernandez-Pozo

Class Content BT

e Relational and not relational databases
e PostgreSQL and SQL syntax
e Table relationships and constraints

Relational Databases BTl

Databases structured to
recognize relations among
stored items of information.

Relational Database Schemas

m
m
5 G INT(10) s 0 fAINTUO) b [INTTD o © > bundlo VARCHAR(128) . - Bid INT(10) g * tem_id INTU10) uy s v
5 namo VARGHAR(32) > bundle VARCHAR(128) uy bundle VARCHAS:UZB) o uuid VARCHAR(128) N :1:‘?:”““2’) : ue wﬂ:})::;‘:‘) _\‘ 7 deleted TINYINT(4) yy bundlo VARGHAR(128) token VARCHAR(64) w | | < name VARCHAR(255) yy
menu._r " imestan
mons rame ViR N 7 deleted TINYINT(4) yy : :ﬂm_-;et_idTI:lTY(l‘N;() wn vid VARCHAR(255) ny : ;'wl V’A:é :;R PN 0::“” Louam::, i \ e _ . elotod TINYINT() o ti B INT(1) * data LONGBLOB
—_ Al UN NN \ fisi i 0B ire INT(11
X AR 1 7 entity_id INT(10) un ny o 7 fid INT(10) un e & langcode VARCHAR(12) wy X N) \ ¥ revision_id INT(10) ux n 7 ontity.id INT(10) un wn < batch LONGBL! & expire INT(11) yy
 uid VARCHAR(128) — |/ path VARCHAR(255) uy 2 revision_id INT(10) ux we 1 revision_id INT(10) un n - name VARGHAR(Z55) uri VARCHAR(255) uy _| & variables LONGBLOB wy . anocads VARCHAR®) & croated INT(H) o
Pl INT(10) oy v 1| % 1oad_tunctons BLOB . langoode VARCHAR(32) # mdule VARCHAR(50) - % langoode VARCHARI12) wy severity TINVINT(3) ux s \ Oreusionid INTH10)
| . K langoode VARCHAR(S2) 1 langood 2 CHAR(GA doscription LONGTEXT \ delta INT(10) un VARCHAR(32)
 fink_path VARCHAR(255) wn | ' | & to_arg_functions BLOB wy 2 deta INTI10) ue s ¥ delta INT(10) uy nn ¥ type VA 64) format VARGHAR(258) filomime VARCHAR(25S) > link VARCHAR(255) \ usor i, taget 8 INT(10) ¢ langoode R(32)
L A L L) UN NN
@ router_path VARCHAR(255) s = | 4, access callback VARGHAR(258) sy ol tags targo 18 INT(10) o %> body_value LONGTEXT id VARCHAR(84) e INTO filesize BIGINT20) ux sn % location TEXT uy \ user picture_ atl VARCHAR(12) ¥ delta INT(10) un ww
< langcode VARCHAR(12) wy < access_arguments BLOB e = < body_summary LONGTEXT < count INT(10) yn nn POt & status TINVINT(4) uy % referer TEXT 1 N mu—wm—m. VARCHAR(1024) < user_picture_target_id INT(10) yn nn 7 name VARCHAR(255) wy
nw "_picture_)
< link_title VARCHAR(255) n page_callback VARCHAR(255) ny % body_format VARCHAR(255) timestamp INT(10) yy uy hostname VARCHAR(128) yy \) < user_picture_alt VARCHAR(512) % value VARCHAR(255) wy
3 \ O user_picture_width INT(10) un © user_picture_title VARCHAR(1024) % expire DOUBLE
< options BLOB < page_arguments BLOB & timestamp INT(11) yy \ O uase_picture_eight INTI10) _picture_t pire NN
4 module VARCHAR(S0) uy SRINT() m — - uaerpe a0 o
 hidden SMALLINT(E) & number_parts SMALLINT(6) u > bundle VARCHAR(128) wn _ user_picture_height INT(10) uy
< extemal SMALLINT(6) wy < context INT(11) yy 7 deleted TINYINT(4) yy
 has_chikdren SMALLINT(6) ny tab_parent VARCHAR(255) yy & nid INT(10) yy s 7 nid INT(10) u v A @ nid INT(10) yn nn
.5
1

@ tid INT(10) yn nn
< sticky TINYINT(4)
& created INT(11) wn

© uuid VARCHAR(128)
S vid INT(10) oy

< expanded SMALLINT(6) wy.
& weight INT(11)

< tab_root VARCHAR(255) ny
 title VARCHAR(255)

7 vid INT(10) un s s
 revision_uid INT(10) un nn

© revision_id INT(10) yn nn
7 langcode VARCHAR(32) yy

¥ uid INT(10) yn wn
> uuid VARCHAR(128)

< depth SMALLINT(6) ny title_callback VARCHAR(255) wy 7 delta INT(10) uy < log LONGTEXT type VARCHAR(32) ny ° VARCHAR(60)
- name

& customized SMALLINT(6) wy title_arguments VARCHAR(255) wy < field_image_target_id INT(10) ux nn & revision_timestamp INT(11) ny % langcode vmcum(:‘;)
&1 INT(10) un theme_callback VARCHAR(255) > fiekd_image_alt VARCHAR(5 12) langeode VARCHAR(12) ©pass VARCHAR(128) " [UGINTHO) b ¥ name VARCHAR(128)
©P2INT(10) g e % theme_arguments VARCHAR(255) uy fild_image_tile VARCHAR(1024) 7 uid INT(10) ux oz. VARCHAR(254) " @ et.namo VARCHAR(S2) 2 value LONGBLOB
©p3INT(10) un e S type INT(1) field_image_width INT(10) u ® 6 INTI10) uw 2|, module VARCHAR(50) sy . theme VARCHAR(SO) s —
5 p4INT(10 ot T i .

P4 INT(10) gy description TEXT uy < field_image_height INT(10) yy ¥ parent INT(10) ux un # name VARCHAR(128) > signature VARCHAR(255) y

PS5 INT(10) un nn
©PBINT(10) un nn
O P7INT(10) un nn

< description_callback VARCHAR(255) wy
< description_arguments VARCHAR(255) un
< position VARCHAR(255) un

< value LONGBLOB
< senialized TINYINT(3) gy

< signature_format VARCHAR(255)
& created INT(11) uy
< aceess INT(11)

7 nid INT(10) yn nn
& vid INT(10) yn an

> bundle VARCHAR(128) yn
7 deleted TINYINT(4) un

INT(10} i
P8 INT(10) g e & weight INT(11) entity_id INT(10) un s @ type VARCHAR(32) nu < login INT(11) s
P9 INT(10) un nn & include_file MEDIUMTEXT & bundle VARCHAR(128) yy > revision_id INT(10) ux ' langcode VARCHAR(12) wn m 5 status TININT(4)
X ™
 updated SMALLINT(E) route_name VARCHAR(255) 7 doloted TINYINT(4) uy * langcode VARGHAR) defau 1angeode INT() i | [puncio VARGHAR(128) s tmezons VARGHARE2)
< route_name VARCHAR(255) - 7 entity_id INT(10) yn nn + delta INT(10) un s title VARCHAR(255) an 7 deleted TINYINT(4) yy opr _langcode VARCHAR(12) sy cid VARCHAR(255) ny © cid VARCHAR(255) yy 7 cid VARCHAR(255) yy
< route_parameters LONGBLOB T & revision_id INT(10) y feld_tags_target_id INT(10) un © uid INT(10) un el 7 @ntity_id INT(10) un v / > preforred_admin_langoode VARCHAR(12) y < data LONGBLOB < data LONGBLOB < data LONGBLOB
A // langoode VARCHAR(32) wy status INT(11) uy & revision_id INT(10) ox o VARCHAR(ZS4) & expire INT(11) 5 expire INT(1) s 5 expire INT(11) s
Quuid VARGHAR(128) / + delta INT(10) yw wn & created INT(11) yy langoode VARCHAR(32) s uid INT(10) un s & created INT(11) wx & created INT(11) yy & created INT(11) yy
? pid INTI10) i ot 1 1 O pid INT(11) ny ' > comment_status INT(11) ny < changed INT(11) un + delta INT(10) uy s 7 sid VARCHAR(128) & serialized SMALLINT(6) wy 5 seralized SMALLINT(6) s > serialized SMALLINT(G) s
@ entity_id INT(10) ux wn .)
. o || e | e e
< bundle VARCHAR(128) yy < source VARCHAR(255) > entity_type VARCHAR(255) yy < body_value LO| < tags tags

 hostname VARCHAR(128) yy
< timestamp INT(11) wn
< session LONGBLOB

» checksum _invalidations INT(11) yy
< checksum_deletions INT(11) wy

& sticky INT(11) uy < checksum _invalidations INT(11) ny

& checksum_deletions INT(11) yy

& checksum_invalidations INT(11) nn
& checksum_deletions INT(11) nn

< body_summary LONGTEXT
< body_format VARCHAR(255)

7 deleted TINYINT(4) yy
 entity_id INT(10) ux wn

< revision_id INT(10) uy

? langcode VARCHAR(32) wy

? delta INT(10) ux wn

< body_value LONGTEXT

< body_summary LONGTEXT
< body_format VARCHAR(255)

 alias VARCHAR(255)
 langcode VARCHAR(12) y

m
@ nid INT(10) u
2 vid INT(10) un wn
7 langcode VARCHAR(12) x|
 defautt_langcode INT(11) wy
 title VARCHAR(255) wy
 uid INT(10) uy e

 status INT(11) yy
 created INT(11) yy

< field_id VARCHAR(255) sy
© uid INT(10) y

 subject VARCHAR(84) uy
 hostname VARCHAR(128) yy
 created INT(11) yy
 changed INT(11) uy

 status TINYINT(3) oy a
 thread VARCHAR(255) yy

< name VARCHAR(60)

+ name VARCHAR(255) yy

< path VARCHAR(255) uy
 pattern_outine VARCHAR(255) yy
% route_set VARCHAR(255) uy

Bt INT(11)

< route TEXT

7 Aid INT(11) i

< event VARCHAR(64) yn.

< identifier VARCHAR(128) yy
< timestamp INT(11) wy

< expiration INT(11) yy

> bundle VARCHAR(128) yy
7 deleted TINYINT(4) yy

¥ entity_id INT(10) un nn

¥ revision_id INT(10) ux n
7 langcode VARCHAR(32) u
7 delta INT(10) yy s

ii

 cid VARCHAR(255) ny
< data LONGBLOB

& expire INT(11) yy

o created INT(11) wy

 cid VARCHAR(255) yy
> data LONGBLOB

& expire INT(11) uy

& created INT(11) yy.

7 cid VARCHAR(255) wy
> data LONGBLOB

& expire INT(11) wy

& created INT(11) uy

7 nid INT(10) uy e
7 langcode VARCHAR(12)
 fallback INT(10) ux wn

& bundle VARCHAR(128) un
7 deleted TINYINT(4) nn

J S P

| enty) v mallVARCHAR(ES comment_status INT(11) changed NI o GG INTI10) uu 1 © number.parts SMALLINT(E) serialized SMALLINTIE) seraized SMALLINTIS) soriaized SMALLINT(E)
< revision_id INT(10) uy < homepage VARCHAR(255) @ pt_nmm INT(11) reaim VARCHAR(255) word VARCHAR(50) nn < tags LDNG'-I'EXT tags LONGTEXT > tags LONGTEXT
= s 7 langcode VARCHAR(32) wy % langcode VARCHAR(12) wy < sticky INT(11) un & grant view TINVINT(3) ux s < count FLOAT - < checksum_i INT(11) h i INT(11) an hecksum _i INT(11) an
71 INT(10) un wn e ¥ delta INT(10) u Indexes checksum_deletions INT(11) nn checksum_deletions INT(11) checksum_deletions INT(11) yy

< uuid VARCHAR(128)

<> comment_body_value LONGTEXT

7 deleted TINYINT(4) yy

< last_comment_name VARCHAR(60)

< field_image_title VARCHAR(1024)

< grant_update TINYINT(3) yn un

& reindex INT(10) yn nn

+ name VARCHAR(255) ny
< data LONGBLOB ny

+ name VARCHAR(128) ny

7 uid INT(11) uy

|
t_delete TINYINT(3)
info VARCHAR(128) nn : < comment_body_format VARCHAR(255) - e L ¥ nid INT(11)
& revision_id INT(10) ux | < bundle VARCHAR(128) un Indexes S T
& type VARCHAR(32) wy : 7 deleted TINYINT(4) wy nestamp NN
T 7 entity_id INT(10) u nae . .
< changed INT(11) | o con 14 INT(10, 7 cid VARCHAR(255) tag VARCHAR(255) ¥ cid VARCHAR(255) nn
 langcode VARCHAR(12) w | | entity_id INT(10) un nn < revision_id INT(10) un . data LONGBLOB e * data LONGBLOB
|l 7 entity_type VARCHAR(255) un ¥ langoode VARCHAR(32) nn 7 sid INT(10) un > expire INT(11) - invaliatons INT() expire INT(11) uy
- n ons INT(11
: bundlo VARGHAR(128) e field_id VARCHAR(255) y 7 delta INT(10) un word VARCHAR(S0) 7 langcode VARCHAR(12) x| - cromed INT(1) deletions INT(11) croatod INT(1)
©cid INT(11) s field_image_target_id INT(10) ux n . o 7 type VARCHAR(16) N
| 7 deleted TINYINT(4) ¥ s INT(10) un n "" i serialized SMALLINT(E) ny © seriaized SMALLINT(B) u
VARCHAR(128) i 12) i 7 collection VARCHAR(128) ny
| * antty GINTE0) bundle (128) u last_comment_timestamp INT(11) uy < field_image_alt VARCHAR(512) langcode VARCHAR(12) > data LONGTEXT yy 7 collection VARCHAR(128) y Oiaga LONGTEXT * tags LONGTEXT
| + name VARCHAR(128) u
%

@ id INT(10) un e

¥ revision_id INT(10) ux sn
7 langcode VARCHAR(32)

+ entity_id INT(10) un s
¥ revision_id INT(10) un nn

< last_comment_uid INT(10) un nn
> comment_count INT(10) yn nn

< field_image_width INT(10) yn
< field_image_height INT(10) yn

 type VARCHAR(16) wy
< score FLOAT

< value LONGBLOB yy

 value LONGBLOB yy

& checksum_invalidations INT(11) ny
& checksum_deletions INT(11) un

 checksum _invalidations INT(11)

& checksum_deletions INT(11) yy

& expire INT(11) uy.

¥ revision_id INT(10) ux nn as
log LONGTEXT yy

 info VARCHAR(128) yy
 changed INT(11) u

7 delta INT(10) un nn

< body_value LONGTEXT

< body_summary LONGTEXT
< body_format VARCHAR(255)

7 langcode VARCHAR(32) wy

7 delta INT(10) yn nn

< comment_body_value LONGTEXT

< comment_body_format VARCHAR(255)

Sol Genomics Network

.= SGN Database =10

R

genes, genomes, sequences, maps, markers, users, expression
data, phenotipic data, breeding data, blast management ...

https://solgenomics.net

I

CHADO

An ontology-based modular schema
for representing genome-associated
biological information

https://solgenomics.net

Non Relational Databases Bl

Non-relational databases, also called NoSQL databases.

. mongo monetdb ,

x4 £

cassandra

B
S R ETWE s B E o
g =
E E'BJSMSS e mmnuﬁ .,‘:',m,g 13

B e e 'v} - SANNAS > ''''''' = ¢75 m -n: "mlfm

|+ GBS =TGituigE o VUUME = 3 = INRLVSIS...

{ » Breeding data | 3 S.II.-GREEE |NF0RMAT|0N2§EN§%§@3:
.ﬂ ° Phenotyplc data " MILLION SETS DEVE[UPMENT gz_" Ev;;'sg)mr‘nll{i:m
' * Variation data § e SEIENCE s £ NOLUGLE ISEARCH =-

il S gs'um" NEW INITATIYE ECOMME gy S50 8 s oy WO s
’—s,‘,’.‘,,"&,“,&z TEBABYTES sy VAR [55
A mi AT e S i —

e >

Indexed Files BTl

e BLAST databases
e Bowtie indexes
e JBrowse

Sol Genomics Network

SQL Language BTl

PostgreSQL

The world’s most advanced
open source database

http://www.postgresal.org

hitp://www.postgresgl.org/docs/9.4/static/sgl-commands.html

Sol Genomics Network

http://www.postgresql.org
http://www.postgresql.org/docs/9.4/static/sql-commands.html

&
Connect to a database for the first time 37|

install postgreSQL

sudo aptitude install postgresqgl

sudo -u postgres psql postgres connect for the first time

[\pas sword user]f change user password

[\ du)— list roles

d
Connect to a PostgreSQL Database 3T}

psql help

psgl --help

man psqgl

psql manual

d
Connect to a PostgreSQL database 31|

Connect to the database Connect to the database using postgres user

psgl -h host —U user

psgl -h localhost —U postgres

psql -h localhost —U bioinfo -d pineapple backup

Connect to the database using bioinfo user

Create and alter a role BTl

create role with permission to create databases

(\du j list roles

[CREATE ROLE bioinfo WITH LOGIN ENCRYPTED PASSWORD 'bioinfo' CREATEDB; j

[ALTER ROLE bioinfo CREATEROLE CREATEDB REPLICATION SUPERUSER;]

(DROP ROLE bioinfo;j

delete role bioinfo grant all permissions to bioinfo user

http://www.postgresqgl.org/docs/9.4/static/sql-alterrole.html

http://www.postgresql.org/docs/9.4/static/sql-alterrole.html

SQL syntax BTl

e (reate, edit and delete databases and schemas

e |mport and export databases

e (reate, edit and delete tables

e |mport tables from a file

e J[ransactions: begin, rollback and commit

¢ |[nsert data and update data in databases

e EXxplore databases, schemas and tables

e Select and conditions: limit, offset, distinct, where, etc.

e Basic table joining

BTl‘ PostgreSQL Cheat Sheet i

List database, schemas and tables
show help
SQL syntax help
SQL help for create table
list databases

SQL query commands
SELECT * FROM mytable:
SELECT column| FROM mytable:
| |SELECT ... WHERE mycolumn =value ';
[SELECT DISTINCT mycolumn from mytable:
SELECT ... GROUP BY mycolumn;
SELECT ... WHERE mycohuma IN (1,2
SELECT ... WHERE mycolurmn LIKE “Xabe%';
§ | SELECT ... WHERE mycohumn ILIKE %abeS';
& |SELECT ... WHERE myycolumn IS NULL;
¥ | SELECT ... LMIT 10;
¥ | SELECT ... OFFSET 10;
SELECT ... JOIN mytable using({common_column):
[SELECT ... JOIN mytable on(common_column| =common_column2)

Basic
Commands

connect to mydd database

list schemas from a database
list tables from public schema

list tables from schema sgn
show blast_db table details

quit psgl

SQL development commands

CREATE DATABASE mydb;

ALTER DATABASE mydb RENAMETO newname;

DROP DATABASE mydb;

CREATE TABLE mytable;

ALTER TABLE mytable RENAME TO newname;

DROP TABLE mytable CASCADE;

ALTER TABLE mytable ADD COLUMN column_name column_type;

ALTER TABLE mytable RENAME COLUMN column_name TO newname;

ALTER TABLE mytable DROP COLUMN column_name RESTRICT;

INSERT INTO mytable (columnl,column2) VALUES (‘valuel’,’'value2’);
UPDATE mytable SET columnle«’valuel’ WHERE column=value;

DELETE FROM mytable WHERE column«’value’;
begin;

commit;

rollback;

v—

Sol Genomics Network

Basic Commands BTI

show help

SQL syntax help http://www. postgresgl.org/docs/9.4/static/sql-commands.html

(\h create database j—SQL syntax help

[\C mydb j— Connect to a database

quit psql

http://www.postgresql.org/docs/9.4/static/sql-commands.html

Bas

ic Commands

list schemas from the database

list all tables from public schema

(\ dt sgn.* jflist all tables from sgn schema

[\d blast_dbj—

list all tables from sgn schema

(\o file. txtj—

send output to file

BTl

7 i
BT PostgreSQL Cheat Sheet s
BTLSGN Databases Course 2016 TN
List database, schemas and tables SQL query commands
" show heip SELECT * FROM mytable;
" SQL syntax help SELECT column| FROM mytable;
\h create table | SQL help for create table T W e Tt
; - SELECT DISTINCT mycolumn from mytable;
SELECT ... GROUP BY mycolumn;
\c mydb connect to mydb database
SELECT ... WHERE mycolumn IN (1.2):
dn list schemas from a database
SELECT ... WHERE mycolumn LIKE “Xabe%';
Ve list tables from public schema | | e\ ECT ... WHERE mycohumn ILIKE Kabe'X'
\dt sgn.* list tables from schema sgn SELECT ... WHERE mycolumn IS NULL;
\d blast_db show blast_db table details SELECT .. LIMIT 10;
™ quit psql SELECT ... OFFSET 10;
SELECT ... JOIN mytable using{common_column):
SQL —

Development ___ jemeeee "

: | DROP DATABASE mydb;

Commands T —

;| ALTER TABLE mytable ADD COLUMN column_name column_type:
& | ALTER TABLE mytable RENAME COLUMN column_name TO newname;

| ALTER TABLE mytable DROP COLUMN column_name RESTRICT;
INSERT INTO mytable (columnl,column2) VALUES (‘valuel’, ‘value2’);
A' UPDATE mytable SET columnle«’valuel’ WHERE column=value;

} | DELETE FROM mytable WHERE column=’value’;
| begin;

commit;

rollback;

Sol Genomics Network

Create Database BTI

create a database create a database and define owner and encoding

(CREATE DATABASE db_name;j

(CREATE DATABASE db name WITH OWNER userl ENCODING ’UTF8’;]

@ list all databases

~
CREATE DATABASE pineapple_db;)

create a database called pineapple_db

Grant Permissions BTI

grant permissions to an user on a database

@RANT ALL PRIVILEGES ON DATABASE db name TO userl;]

SELECT ("read")
UPDATE ("write")
INSERT ("append")
DELETE

TRUNCATE
REFERENCES
CREATE

CONNECT
TEMPORARY

ALL PRIVILEGES

Grant Permissions BTl

\dp mytable
Access privileges

Schema | Name | Type | Access privileges | Column access privileges
-------- e Sy g
public | mytable | table | bioinfo=arwdDxt/bioinfo | coll:

: =r/bioinfo : bioinfo rw=rw/bioinfo

admin=arw/bioinfo

rolename=xxxx -- privileges granted to a role
=XXXX —-- privileges granted to PUBLIC

-— SELECT ("read")
-—- UPDATE ("write")
—-- INSERT ("append")
-— DELETE
—-—- TRUNCATE
--— REFERENCES
TRIGGER
-— EXECUTE
-— USAGE
-—- CREATE
—— CONNECT
-—- TEMPORARY
arwdDxt -- ALL PRIVILEGES (for tables, varies for other objects)
* —— grant option for preceding privilege

HQ Qad X dX O oo g5 H
|
|

/yyyy -- role that granted this privilege

Edit a Database =00

rename database db _name to new_db name

(ALTER DATABASE db name RENAME TO new_db_name;j

(ALTER DATABASE db name OWNER TO new ownher; j

change database owner

How To Delete a Database BT

delete a database

(DROP DATABASE db name ;j

(DROP DATABASE pineapple db ;]

delete a database called pineapple db

|\ \

Dump a database =10

ask for password

back up a database

pg dump -U user -h host db name > db file

pg dump -U postgres -h localhost pineapple db > pineapple dump.sql

back up a database called pineapple db

L\

Import a Dumped Database =10

[CREATE DATABASE pineapple db ;j create a database

import a database

cat pineapple dump.sqgl | psql -U postgres -h localhost -d pineapple db

Z
Exercises | =10

1. Print in a file the table info (not the data) for all the tables in
pineapple_backup

Create and delete a user with your name (no bioinfo)
Create a database called new_pineapple

Rename that database to pineapple_demo

o ~ 0 b

Export the database pineapple_backup in a file called
pineapple_backup.sql

6. Import the database pineapple_backup into
pineapple_demo

Table Estructure BTl

Columns
primary key file_base title type
column column column column

blast_db_id | file_base | title | type
————————————— -
1 | unigene/Capsicum_combined | Capsicum annuum (pepper) Unigenes | nucleotide
2 | unigene/Ipomoea_batatas | Ipomoea batatas (sweet potato) Unigenes | nucleotide
3 | unigene/Nicotiana_sylvestris | Nicotiana sylvestris (wood tobacco) Unigenes | nucleotide
4 | unigene/Petunia_hybrida | Petunia hybrida Unigenes | nucleotide
5 | genbank/nt | NCBI NT comprehensive nucleotide database | nucleotide

Table Estructure BTl

Row

blast_db_id | file_base | title | type
————————————— +—
1 | unigene/Capsicum_combined | Capsicum annuum (pepper) Unigenes | nucleotide
2 | unigene/Ipomoea_batatas | Ipomoea batatas (sweet potato) Unigenes | nucleotide
3 | unigene/Nicotiana_sylvestris | Nicotiana sylvestris (wood tobacco) Unigenes | nucleotide
4 | unigene/Petunia_hybrida | Petunia hybrida Unigenes | nucleotide
5 | genbank/nt | NCBI NT comprehensive nucleotide database | nucleotide

Constraints =10

blast_db_id | file_base | title | type
————————————— +-—
31 | unigene/Capsicum_combined | Capsicum annuum (pepper) protein sequences | protein
71 | unigene/Ipomoea_batatas | Ipomoea batatas (sweet potato) Unigenes | nucleotide
70 | unigene/Nicotiana_sylvestris | Nicotiana sylvestris (wood tobacco) Unigenes | nucleotide
29 | unigene/Petunia_hybrida | Petunia hybrida Unigenes | nucleotide
15 | genbank/nt | NCBI NT comprehensive nucleotide database | nucleotide
UNIQUE NOT NULL nucleotide
or
protein

« NOT NULL Constraint: Ensures that a column cannot have NULL value.
« UNIQUE Constraint: Ensures that all values in a column are different.
- PRIMARY Key: Uniquely identifies each row/record in a database table.

« FOREIGN Key: Constrains data based on columns in other tables.

« CHECK Constraint: The CHECK constraint ensures that all values in a column
satisfy certain conditions.

Database Schema
Relationships and Normalization STl

gene
primary_key seswsipgene_id
gene_name
gene_description
organism_name
seqguence
sequence_length
sequence_type
gene_id | gene_name | gene_description | organism_name | sequence | sequence_length | sequence_type
_________ N SRR TS T PRI Tl A AT P IRP FE A I L — -~ —t——————— =t~
1 § Aco000001 | 60S ribosomal ¥ Pineapple Y ATGTCGTCGATTTA | 432 | nucleotide
2 § Aco000002 | 26S proteasome _§ Pineapple § ATGAATTGCGAGAC | 512 | nucleotide
3 | ACOUUUUY3 | microtupucte "‘4 Pineapple 4 ATGGATGATGCGCA | 765 | nucleotide
4 | Aco000oo4 | DNA polymerase f Pineapple § MSSIIDKTKRTKKA | 180 | protein
5 | AC0000005 | Ubiguitin . _ & Pineapple 4 MDDAPVPVAEPTLM | 214 | protein
6 § Aco00000l | 60S ribosomal § Pineapple i MSSIIDKTKRTKKA | 142 | protein
7 % Ac000®002 | 26S‘proteasomer Q‘Pineapple # MDDAPVPVAEPTLM | 174 | protein

I g

One To Many =10

has many has many
primary_key .
- organism 1 * gene 1 * sequence
organism_id gene_id sequence_id
scientific_name name sequence
common_name description type
o — organism_id length
_organisnid | scientific_name | common-name. gene_id
1 | Ananas comosus | Pineapple "
gene_id | name | description | organism_id foreign_key
————————— e ——————
1 | Aco00000l | 60S ribosomal | 1
2 | Aco000002 | 26S proteasome | 1
3 | Aco@00003 | microtubule | 1
4 | Aco000oo4 | DNA polymerase | 1
5 | Aco000005 | Ubiquitin | 1
sequence_id sequence length | type | gene_id

________ i —————— -+ — ————

nucleotide |

| |

+ +
1 | ATGTCGTCGATTTA | 432 | 1
2 | ATGAATTGCGAGAC | 512 | nucleotide | 2
3 | ATGGATGATGCGCA | 765 | nucleotide | 3
4 | MSSIIDKTKRTKKA | 180 | protein | 1
5 | MDDAPVPVAEPTLM | 214 | protein | 2

One To Many =10

gene_id | gene_name | gene_description | organism_name | sequence | sequence_length | sequence_type
————————— - ———————————————
1 | Aco00000l1l | 60S ribosomal | Pineapple | ATGTCGTCGATTTA | 432 | nucleotide
2 | Aco000002 | 26S proteasome | Pineapple | ATGAATTGCGAGAC | 512 | nucleotide
3 | Aco000003 | microtubule | Pineapple | ATGGATGATGCGCA | 765 | nucleotide
4 | Aco000004 | DNA polymerase | Pineapple | MSSIIDKTKRTKKA | 180 | protein
5 | Aco000005 | Ubiquitin | Pineapple | MDDAPVPVAEPTLM | 214 | protein
gene_id | name | description
_________ +___________+________________
1 | Aco000001l | 60S ribosomal _ o
2 | Aco@00002 | 26S proteasome scientific_name | common_name
3 | Aco000003 | microtubule | § 1§ s &t S
4 | Aco000004 | DNA polymerase Ananas comosus | Pineapple
5 | Aco0000o5 | Ubiquitin

| | |

+ + + .
1 | ATGTCGTCGATTTA | 432 | nucleotide
2 | ATGAATTGCGAGAC | 512 | nucleotide
3 | ATGGATGATGCGCA | 765 | nucleotide
4 | MSSIIDKTKRTKKA | 180 | protein
5 | MDDAPVPVAEPTLM | 214 | protein

Many To Many BTl

blast_db BLAST
(=) Input parameters
blast_db_id
name Categories Popular datasets = ‘ - ‘ \ @
description Database Tomato Genome cDNA (ITAG release 2.40) 4 db details
path
group ¥ Popular datasets
group_o rder Tomato Genome (Current version)
Potato Genome (Current version)
Pepper Genome (Current version)
Eggplant Genome (Current version)
N.benthamiana Genome (Current version)
N.tabacum Genomes (Current version)
Other Nicotiana Genomes (Current version)
BLAST databases Tomato Wild Species
L . - Coffee Genome
classified in categories oo Inbred Lines
Genome Sequences
Markers
Organelle Genomes
Tomato Genome (other datasets)

Sol Genomics Network

Many To Many Relationship BTl

primary_key

blast_db 1 « | pblast_db_blast_db_group primary_key

A blast_db_id blast_db_blast_ db group Id
name Dlast_db_id #mermmsnasnrsrss foreign_key
description blast_db group |d B
path "
]

| K
p”maryi_ ey« blast_db_group

" blast_db_group_id
name
ordinal

Sol Genomics Network

Create a Schema =00

create a schema

(CREATE SCHEMA schema name ;]

[CREATE SCHEMA IF NOT EXISTS schema name AUTHORIZATION user_name;)

create a schema schema_name owned by user_name if it does not exist already

Edit a Schema =00

rename schema name to NEW_Name

[ALTER SCHEMA name RENAME TO new name;]

[ALTER SCHEMA name OWNER TO new_ ownher;]

change schema owner

Sol Genomics Network

How To Delete a Schema BT

delete a schema

[DROP SCHEMA schema name CASCADE;]

RESTRICT

(DROP SCHEMA blast

delete a schema called blast Refuse to drop the schema if it

contains any objects. This is the
default.

Create a New Table =00

create an empty table

(CREATE TABLE table name ();]

(CREATE TABLE sgn.blast db () ;j

create an empty table blast db in sgn schema

Create a Table =00

this column cannot be empty

large autoincrementing integer row unigque id

gene

gene_id
name
description
length
sequence
organism_id

Sol Genomics Network

Create a Table =00

value limited to 80 variable characters values cannot be repeated

CREATE TABLE gene (
gene id bigserial PRIMARY KEY,

name [varchar(80)|| UNIQUE NOT NULL,
description

length integer,
sequence text,
organism id biggserial REFERENCES organism (organism 1id)

) ;

gene

. L. ene_id
variable characters unlimited length ﬁame

description
length
sequence
organism_id

Sol Genomics Network

Numeric Types =10

Name ::::;age Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes LYPical choice for -2147483648 to +2147483647
integer

bigint 8 bytes large-range integer -9223372036854775808 to +9223372036854775807
decimal variable user-specified up to 131072 digits before the decimal point; up to 16383 digits

ecima precision, exact after the decimal point

, variable user-specified up to 131072 digits before the decimal point; up to 16383 digits

numer1ce precision, exact after the decimal point
real 4 bytes ;/naer)u(aatz:lte-preasnon, 6 decimal digits precision
:z::iion 8 bytes ;/naer)l(aatz:lte-preasmn, 15 decimal digits precision

small autoincrementing

. 1 to 32767
integer

smallserial 2 bytes

autoincrementing

. 1 to 2147483647
integer

serial 4 bytes

bigserial 8 bytes :f"t'ggear“t°'“°reme”t'“g 1 to 9223372036854775807

7
Edit Tables BTI

add a column of type varchar to a table rename a column

(%LTER TABLE mytable ADD COLUMN mycolumn varchar(30);j

(ALTER TABLE gene RENAME COLUMN name TO gene name; j

(ALTER TABLE gene ALTER COLUMN name TYPE varchar(40); j

EALTER TABLE gene DROP COLUMN sequence RESTRICT;)

drop a column from a table change column type

e >

Delete a Table Using Drop BTl

delete a table

[DROP TABLE table name CASCADE;J

RESTRICT(: j

(DROP TABLE gene

delete a table called gene

Refuse to drop the table if any

objects depend on it. This is the
default.

Delete all rows from a table BTI

delete rows from a table

empty all the rows from tables gene and blast_db

(TRUNCATE table name CASCADE;]

| TRUNCATE gene, blast_db;)

(TRUNCATE gene RESTART IDENTITY;)

empty the table gene and restart primary id index

Delete a Table BT

empty a table

[DELETE FROM table_name;j

(DELETE FROM gene WHERE column=’value’;j

delete the rows from table gene based on a condition

Drop Vs.Truncate Vs Delete BTI

DROP TABLE -- remove a table

DROP TABLE removes tables from the database. Only the table owner, the schema owner, and superuser
can drop a table. To empty a table of rows without destroying the table, use DELETE or TRUNCATE.

To drop a table that is referenced a foreign-key constraint of another table, CASCADE must be specified.
(CASCADE will only remove the foreign-key constraint, not the other table entirely.)

DELETE -- delete rows of a table based on a condition

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is
absent, the effect is to delete all rows in the table. The result is a valid, but empty table.

TRUNCATE -- empty a table or set of tables

TRUNCATE quickly removes all rows from a set of tables. Very useful on large tables.

http://www.postgresql.org/docs/9.4/static/sql-delete.html
http://www.postgresql.org/docs/9.4/static/sql-truncate.html

Create New Tables From SQL File BT

ask for password

create tables from a file

print input from file

psgql -U username -d myDataBase -f myInsertFile

psql -U postgres -d ananas -h localhost -a -f gene tables.sqgl

create tables from gene_tables.sql file in pineapple _demo database

’
2

3.
4.

5

Exercises |l

. Create a database called ananas

. Create a table called “Genes” with the columns:

* name
» description
* sequence

Rename the table “Genes” to “gene”
Remove the column “sequence”

. Add a column named organism_id

=20

6. What are the “gene” table column types? (integer, text...)

/.

Drop the table “gene”

Exercises |l =10

8. Use truncate to delete all the sequences from
pineapple_demo (created in Exercises I

9. Write in a file the code to create the next tables and
load them Into a database called ananas

has many has many
organism 1 x gene 1 x sequence
organism_id gene_id sequence_id
scientific_name name seqguence
common_name description length
organism_id type
gene_id

L\ \

Database Schema Bl
has many has many

organism 1 * gene 1 * seguence
organism_id gene_id sequence_id
scientific_name name seqguence
common_name description length

organism_id type
gene_id

psql -U postgres -d pineapple_demo -h localhost -a -f gene_tables.sql

psql -U postgres -d pineapple_demo -h localhost -a -f blastdb_tables.sq|

Insert Rows =00

insert values into a table

(INSERT INTO mytable (coll,col2) VALUES (‘vall’,’'val2’) ;j

(INSERT INTO gene (name,description) VALUES (‘Solyc01g001’, 'unknown’) ;j

insert gene name and description into gene table

J
Update Rows =00

change several column
values from a row

change column values from a row

[UPDATE mytable SET coll=‘vall’ WHERE c012=‘va12’;j

EJPDATE mytable SET a=5, b=3, c=1 WHERE a>0;

(?PDATE gene SET name = ‘Solyc01g001’ WHERE gene id=1;]

set gene name to Solyc01g00| for the row with gene_id |

Delete Rows

delete the rows from table gene based on a condition

BTl

GDELETE FROM mytable WHERE column=‘value’;

)

(?ELETE FROM gene WHERE name=‘Solyc01g001’

-

(?ELETE FROM gene WHERE length<='100’;]

delete genes smaller than 100 nucleotides

gene

gene_id
name
description

delete gene named
SolycO1g001

Operator Description

less than

greater than

less than or equal to
greater than or equal to
equal

not equal

length SRR S

undo a transaction

Transactions

g
BEGIN;

ROLLBACK;

\

UPDATE gene SET name=’'Solyc01g001’ WHERE gene id=1;

J

BTl

-
BEGIN;

COMMIT;
-

INSERT INTO gene (name,description) VALUES (‘Solyc01g001’, 'unknown’);

\

J

commit a transaction

1.

Exercises Il =10

Insert into the tables organism, gene and sequence the first
two sequences from the file pineapple_5k_proteins.fasta
from the folder ~/Desktop/Data

Create a database called pineapple_copy and import the
data from pineapple_backup.sql file created in Exercises |

Use transactions to delete the sequences longer than 100
amino acids from pineapple_copy

Database Schema BTl

has many has many
organism 1 x gene 1 * seqguence
organism_id gene_id sequence_id
scientific_name name seqguence
common_name description length
organism_id type
gene_id

scripts to upload data. EgQ: load_pineapple_fasta.pl

Sol Genomics Network

BTl

BT(PostgreSQL Cheat Sheet \)-

BTLSGN Databases Course 2016 AN

List database, schemas and tables |
\ show help E |SELECT * FROM mytable;

" Pyp—— § | SELECT column | FROM mytable: l‘ B e SQL query

\h create table SQL help for create table ,; SELECT ... WHERE mycolumn ='value |,
([list dacabases | SELECT DISTINCT mycolumn from mytable:

T T [T re—— commands

¢ | SELECT ... WHERE mycolumn IN (1.2):

\dn list schemas from a database 1
SELECT ... WHERE mycolumn LIKE “Xabe%';

e Uit tables from public schemd 1 | SELECT ... WHERE mycotumn ILIKE %abe's’
\dt sgn.* list tables from schema sgn ! WHERE mycolumn IS NULL;
\d blast_db show blast_db table details L LUMIT 10
\q quit psql

|seLecT ... 1d

SQL development commands

CREATE DATABASE mydb;

ALTER DATABASE mydb RENAME TO newname;

DROP DATABASE mydb;

CREATE TABLE mytable;

ALTER TABLE mytable RENAME TO newname;

DROP TABLE mytable CASCADE;

ALTER TABLE mytable ADD COLUMN column_name column_type;

ALTER TABLE mytable RENAME COLUMN column_name TO newname;

ALTER TABLE mytable DROP COLUMN column_name RESTRICT;

INSERT INTO mytable (columnl,column2) VALUES (‘valuel’, ‘value2’);
UPDATE mytable SET columnl«’valuel’ WHERE column=value;
DELETE FROM mytable WHERE column«’'value’;

begin;

commit;

rollback;

Sol Genomics Network

Querying a Table =00

query all the data from the table

(SELECT * FROM mytable; j

(SELECT name,description FROM gene;j

get the name and description from all the genes gene

gene_id
name
description
organism_id

Select - Where =00

query all the rows from a table for a condition

[SELECT * FROM mytable WHERE Coll=’Vall’;j

(SELECT name,description FROM gene WHERE name=‘Aco000001’'; j

gene

get the name and description from gene Aco00000 |

gene_id
name
description
organism_id

e >

Limit and Offset

display the first 10 entries found

(SELECT * FROM mytable LIMIT lO;j

(SELECT name FROM gene OFFSET 10; j

display the last |0 gene names found in table gene

BTl

Select - Distinct =00

get the different entries for coll on mytable

[SELECT DISTINCT coll FROM mytable; j

[SELECT DISTINCT description FROM gene;j

gene

get the different descriptions from the gene table "
gene_i

name
description
organism_id

Count =00

count rows from table

-
\SELECT COUNT(*) FROM mytable;j

-
SELECT COUNT (name) FROM gene;jfcount the gene names
\.

P
SELECT COUNT(DISTINCT description) FROM gene;j

\.

count the different descriptions from gene table gene
gene_id
name
description
organism_id

Sort Query Results BTl

ascendant order

get all the rows from mytable sorted by column |

(%ELECT * FROM mytable ORDER BY Coll;j

=

(%ELECT sequence id,length FROM sequence ORDER BY length DESC;]

(%ELECT sequence id,length FROM sequence ORDER BY length

get all the sequence_id values sorted by sequence
sequence length in descendant order sequence_id

sequence
length

type
gene_id

I BTI

query all the rows for several values from a column

[SELECT * FROM mytable WHERE coll IN (‘vall’,’val2’) ;j

(SELECT * FROM gene WHERE gene id IN (1,2);]

get the rows for the genes with id | and 2 gene

gene_id
name
description
organism_id

7
Comparison Operators BTl

Operator Description

< less than
> greater than
<= less than or equal to
In addition to the comparison operators, o greater than or equal to
the special BETWEEN construct is available: I
= equa
WHERE col_name BETWEEN x AND y <>or 1= not equal

IS equivalent to
WHERE col_name >= x AND col_name <=y

Notice that BETWEEN treats the endpoint values as included in the range. NOT BETWEEN
does the opposite comparison:

WHERE col_name NOT BETWEEN x AND y
IS equivalent to

WHERE col_name < x OR col_name >y

NULL BTI

To check whether a value is or is not null, use the constructs:

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs:

expression ISNULL
expression NOTNULL

Sol Genomics Network

Like =TI

return all the rows when col is equal to ribosomal

return all the rows with description not containing ribosomal

[SELECT * FROM mytable WHERE coll LIKE ‘ribosomal’; j

(éELECT * FROM gene WHERE description NOT LIKE ‘%ribosomal%’;

ILIKE

return all the rows with description starting with ribosomal

case insensitive search

(SELECT * FROM gene WHERE description ’ribosomal%’;j

Like and iLike =00

LIKE case sensitive comparison
i1LIKE case insensitive comparison

one character wildcard

oo |

wildcard

SELECT * FROM gene WHERE description LIKE ‘ribosomal’;

‘ribosomal’

‘ribosomal$%’
‘$ribosomal’
‘¢ribosomal%’
‘Ribosomal$’

! LIKE ‘' ibosomal%’

¢ iLIKE ‘%ribosomal%’
. NOT LIKE ‘S$ribosomal’ §

Join Tables BTl

join two tables by a common id

(SELECT * FROM tablel JOIN table?2 USING(common_id);j

(SELECT * FROM tablel JOIN table2 ON(idl=id2) where ..; j

join two tables using two ids with equivalent values

o

N o O &

Exercises |V

. Find the 10 longest genes in pineapple_backup
. Find the 10 shortest genes in pineapple_backup

How many different descriptions are in
pineapple_backup

How many genes are in pineapple_backup
What is the description for the gene Aco0058847
What is the description for the gene with id 43417

. What is the gene with the first description

alphabetically?

. And the last one?

=20

10.
11.

12.
13.
14.

15.

7
Exercises IV =10

How many gene description start with A (uppercase A)
How many different descriptions start with A

What is the name, description and length of the longest gene
starting with A?

What are the genes with length between 118 and 1207
And their descriptions?

What is the longest protein containing ribosomal in its
description? (case insensitive)

What are the genes smaller than 50 or longer than 3000
amino acids?

16.

17.

Exercises IV =10

What are the descriptions for the genes Aco000443.1 and
Aco000775.17?

Save in a file all the organism, gene and sequence
iInformation for the entries with gene ids 427 and 752

